Broadband near-infrared metamaterial absorbers utilizing highly lossy metals

نویسندگان

  • Fei Ding
  • Jin Dai
  • Yiting Chen
  • Jianfei Zhu
  • Yi Jin
  • Sergey I. Bozhevolnyi
چکیده

Radiation absorbers have increasingly been attracting attention as crucial components for controllable thermal emission, energy harvesting, modulators, etc. However, it is still challenging to realize thin absorbers which can operate over a wide spectrum range. Here, we propose and experimentally demonstrate thin, broadband, polarization-insensitive and omnidirectional absorbers working in the near-infrared range. We choose titanium (Ti) instead of the commonly used gold (Au) to construct nano-disk arrays on the top of a silicon dioxide (SiO2) coated Au substrate, with the quality (Q) factor of the localized surface plasmon (LSP) resonance being decreased due to the intrinsic high loss of Ti. The combination of this low-Q LSP resonance and the propagating surface plasmon (PSP) excitation resonance, which occur at different wavelengths, is the fundamental origin of the broadband absorption. The measured (at normal light incidence) absorption is over 90% in the wavelength range from 900 nm to 1825 nm, with high absorption persisting up to the incident angle of ~40°. The demonstrated thin-film absorber configuration is relatively easy to fabricate and can be realized with other properly selected materials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Near-ideal optical metamaterial absorbers with super-octave bandwidth.

Nanostructured optical coatings with tailored spectral absorption properties are of interest for a wide range of applications such as spectroscopy, emissivity control, and solar energy harvesting. Optical metamaterial absorbers have been demonstrated with a variety of customized single band, multiple band, polarization, and angular configurations. However, metamaterials that provide near unity ...

متن کامل

Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation.

Broadband electromagnetic wave absorbers are highly desirable in numerous applications such as solar-energy harvesting, thermo-photovoltaics, and photon detection. The aim to efficiently achieve ultrathin broadband absorbers with high-yield and low-cost fabrication process has long been pursued. Here, we theoretically propose and experimentally demonstrate a unique broadband plasmonic-metamater...

متن کامل

Light Absorber with an Ultra-Broad Flat Band Based on Multi-Sized Slow-Wave Hyperbolic Metamaterial Thin-Films

Here we realize a broadband absorber by using a hyperbolic metamaterial composed of alternating aluminum-alumina thin films based on superposition of multiple slow-wave modes. Our super absorber ensures broadband and polarization-insensitive light absorption over almost the entire solar spectrum, near-infrared and short-wavelength infrared regime (500–2500 nm) with a simulated absorption of ove...

متن کامل

Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings

Resonant absorbers based on nanostructured materials are promising for variety of applications including optical filters, thermophotovoltaics, thermal emitters, and hot-electron collection. One of the significant challenges for such micro/nanoscale featured medium or surface, however, is costly lithographic processes for structural patterning which restricted from industrial production of compl...

متن کامل

Optically thin composite resonant absorber at the near-infrared band: a polarization independent and spectrally broadband configuration.

We designed, fabricated, and experimentally characterized thin absorbers utilizing both electrical and magnetic impedance matching at the near-infrared regime. The absorbers consist of four main layers: a metal back plate, dielectric spacer, and two artificial layers. One of the artificial layers provides electrical resonance and the other one provides magnetic resonance yielding a polarization...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016